
UBR iOS Development - Senior Design Team Dec14-16

Unified Butterfly Recorder: iOS
Final Report

Senior Design Team DEC14-16

Eric Larssen | CJ Mankin | Sean Shickell

Client: Reiman Gardens
Nathan Brockman - Anita Westphal

Advisor: Dr. Diane Rover

dec1416.ece.iastate.edu | 1

UBR iOS Development - Senior Design Team Dec14-16

Table of Contents
Project Overview

Background
Surveys, Sightings, and Protocols
Target Devices
Problems
Objective
Functional Requirements
Non-Functional Requirements

System Design
Architecture
Functional Decomposition
Design Decisions

Detailed Design
Database (Schema)
User Interface
Sightings
Remote Export Support

Testing
Simulation and Logging
Developer Testing
Field Testing

Project Management
Standards
Schedule and Timeline
Work Breakdown
Risks
Communication

Summary
Acknowledgments
Conclusion
Maintainence

Appendix A: User Manual
Getting the App
Basic Surveying

dec1416.ece.iastate.edu | 2

UBR iOS Development - Senior Design Team Dec14-16

Project Overview
Background
Butterfly population levels are an effective way of indicating climate changes in an
environment. The 2013 Unified Butterfly Recorder team created an Android application
(app) that changed the way butterfly sightings are recorded around the world.
Popularity of the app was exceptional, but Apple users, including several
Apple-exclusive organizations, were unable to participate. Thus, the demand for a
similar iOS app led to the creation of this team.

Surveys, Sightings, and Protocols
The butterfly research community consists of a myriad of organizations and individual
scientists that all collect information that they may deem necessary or important. A
survey is a collection of butterfly sightings gathered in one general location over a time
span that is generally less than a few hours. A sighting is simply a sighting of one or
more butterflies of a particular species and the data surrounding it. Organizations
handle sightings generally the same way albeit collect different data, where they differ
is how they conduct surveys. We call these different surveys protocols. Below are the
protocols we have implemented in our application.

Pollard Walk
A surveyor repeats an identical route several times over the course of years, recording
sightings visible within a specific range of the path, aiming for consistency of
recording. This can allow more rigorous statistical analysis.

Distance Sampling

Record the distance of sightings from a specific line or point in order to estimate local
distribution and abundance.

Presence-Absence
 Simply record whether a particular species has been sighted at all in an area.

dec1416.ece.iastate.edu | 3

UBR iOS Development - Senior Design Team Dec14-16

Meandering
Similar to field trips, this protocol involves individuals or groups walking an
indeterminate path looking for as many individuals as they can find.

Mark-Recapture
Surveyors capture butterflies with nets. They then place a mark on their wings and
release them. Later they return to the same location and capture more butterflies,
making notes when they find already marked butterflies.

Target Devices
After discussions with our client and advisor we decided to support all devices that
support iOS 7 or later. This turned out to be a preliminary choice, as Apple introduced
iOS 8 during the second half of this project. iOS 8 introduced some new features in
development and testing, and all devices that supported iOS 7 also support iOS 8.
Because of this, we shifted our target to iOS 8.

We chose to support iOS 8 devices because they are modernized, and support Apple
location services, either through assisted-GPS in cellular models or broader WiFi
services in standard models. The presence of location services is a requirement
whenever possible due to the enhanced functionality it provides our app. The
background location determination provides weather information for the survey and
gathers a GPS gridpoint for a sighting when it is made.

When considering physical devices, our application is less complicated in that most
Apple devices have the same general features as far as the developer is concerned.
The major exception to this rule is in screen size and resolution, as devices range from
smaller iPod touches to a full size iPad and some models contain Retina displays.

Finally, we had to consider the presence of onboard sensors. The Android team
worked to support the presence or absence of pressure, temperature, and ambient
light sensors in their application to gather such information in the background when a
sighting was made. Of these legacy choices, the Apple devices that we choose to
support by choosing iOS 7 devices will only contain ambient light sensors. The client
has accepted that pressure and temperature fields will have to be filled by manual
entry or weather service information.

dec1416.ece.iastate.edu | 4

UBR iOS Development - Senior Design Team Dec14-16

Problems
In general there is no national or global standard for the type of data collected, how it is
recorded, or the methods of collection. The result is multiple, organization-specific
databases, each collecting or excluding their own unique set of datapoints. The lack of
such a standard creates data disparity, and thus complicates analysis and fosters
error-prone conclusions.

More specific problems being addressed by our project are listed below in no
particular order.

● Apple users are unable to utilize the Android app and are currently entering
survey information manually using paper and pencil.

● The aggregation of data requires manual effort and is therefore prone to human
error.

● Third party organizations need to convert the data from the Android and iOS
app to their own systems, and currently have to do so manually.

Objective
Data fragmentation, collection methods, and data storage continue to impede progress
toward a single, unified database of butterfly sighting information that can be used to
aid conservation efforts around the world. The Android app took the first steps to
achieving a solution to these problems. We aim to continue this effort by creating an
iOS application to introduce and include a larger subset of the surveyor community to
the Unified Butterfly Recorder framework.

In doing so, we will aim to uphold the standards set by the Android Team in usability,
reliability, functionality in our application. We will continue to support the easy
collection of survey data across multiple protocols and efficient collation and
exportation operations to conform to the needs of the iOS community.

We will continue to work with the community to raise awareness for the Unified
Butterfly Recorder framework and try to convince more organizations to adopt it’s data
collection applications. We will move beyond mere emulation of the Android app and
work to continue surpassing the quality and efficiency of current surveying methods by
interacting with and responding to feedback from the community.

dec1416.ece.iastate.edu | 5

UBR iOS Development - Senior Design Team Dec14-16

Functional Requirements
Summary
Allow the user to record any amount of information they wish to store from sightings in
a survey data structure. Collect as much information from the device as possible,
relating to location and conditions. Allow users to export their data to external store,
email, or web server.

List of Inherited, Cross-Platform Requirements
The following is a list of functional requirements provided to the Android team we
inherited with the project:

Automated Data Collection

● Breadcrumbs (waypoints on a map for route tracing)
● Date and Time
● Wind Speed and Direction
● Humidity
● Cloud Cover

Manual Data Collection

● Increment / decrement a sighting instance for each species
● Habitat description and conditions
● Mark and recapture data entry
● Categorized behavior notes
● Location name
● Surveyor names and count
● Comment section
● Manual weather entry
● Photo capture

iOS Specific Requirements

● Modify collection methods to support manual entry where automatic collection
is impossible.

● Allow for location services failure in areas where they are unavailable
● Account for disparity in GPS gridpoint accuracy across devices

Web Export Requirements
Allow submission of the survey and its data to to a server which will put the data into a
database.

dec1416.ece.iastate.edu | 6

UBR iOS Development - Senior Design Team Dec14-16

Non-Functional Requirements
Inherited, Cross-platform Requirements

● The battery must drain no more than 50% during a 4 hour survey on
recommended settings with an average phone

● Should require little or no training
● Data should not be lost upon exceptional conditions
● Allow users to record data in absence of a data or wifi connection
● Usable on a device without a subset of supported hardware features and

sensors
● Minimize network traffic
● Submit data via wifi or cell network
● Failure handling on data submission
● Leave app in middle of survey, and continue survey later
● Minimize CPU usage

iOS Specific
● Stay consistent to the Android workflow design
● Maintain Apple Human Design standards
● Preserve consistent user experience across platforms
● Ensure similar database schemas and data collection between apps

dec1416.ece.iastate.edu | 7

UBR iOS Development - Senior Design Team Dec14-16

System Design

Architecture

Figure A. Information summarized from poster of Senior Design Team 08, December 2013:
http://butterflies.ece.iastate.edu/files/ubr-poster.pdf

Android
The architecture summarized in Figure A., displayed above, represents the system
architecture for the Android app. This architecture is included in our report because it
represents the primary constraint in our design. The following items summarize the
features of the existing architecture.

● The user interface is achieved through subclasses of the Android Activity class
(pictured in yellow)

● UI events trigger actions by intermediate services, adapters, or providers
(pictured in red)

● Intermediaries write data directly to application or device storage (pictured in
gray)

dec1416.ece.iastate.edu | 8

UBR iOS Development - Senior Design Team Dec14-16

iOS
As the continuation team, our design process needed to adapt the Android
architecture into a model that is compatible with the iOS framework. Figure B.,
displayed below, represents the architecture that arose from that design process. The
following items summarize the differences from the original architecture

● The user interface is achieved through subclasses of iOS UIView class
● UI events trigger functions provided by relevant frameworks (e.g. CoreLocation)

included in the build path
● iOS applications restrict writing to an Apple device’s physical disk, so there is no

phone external storage
● Location services require interaction with a separate framework than Apple

Maps, as opposed to a single system within the Google Maps API
● iOS includes UI support that eliminates the need to Observer functions

Figure B.

dec1416.ece.iastate.edu | 9

UBR iOS Development - Senior Design Team Dec14-16

Figure C.

Server
Figure C., displayed above, serves two purposes. The first is to represent the full
Unified Butterfly Recorder framework. The second is to illustrate the scope of this
project. Originally, the scope of this project was limited to the development of the iOS
application. When the Android Team was developing their application, they created a
prototype server to receive data from the application via PHP as another export option.
This idea never moved past a proof-of-concept phase in the Android project. After
many discussions with our clients and advisor, we decided to take it a step further and
create a server application that would serve as an interface for external organizations
to receive data from and for both applications to send data to. We will explain why we
chose this route later in the Detailed Design, Remote Server section.

Functional Decomposition
Views

dec1416.ece.iastate.edu | 10

UBR iOS Development - Senior Design Team Dec14-16

In Figures A and B, these are represented by the yellow boxes. In Figure A, the
interfaces are defined using XML, using Java Activity classes to define functionality of
the interface. Each Activity class also defines how and when the Activity will transition
to a different Activity using an object called an Intent. Within iOS, interface building is
encapsulated in a Storyboard file. A storyboard is used to define each screen, or View
Controller, place user interface elements like buttons and text fields, and define
screenflow using transition objects called Segues. Each element is then linked back to
an Objective-C subclass of the ViewController class, which acts as a delegate for
callbacks made as a result of UI events monitored by each element.

Since a well-crafted application can appear similar and have similar functionality in
both frameworks, it is easy to assume that programing between them is trivial.
Contrary to intuition, an Android button behaves very differently from an iOS button. An
Android Intent interacts differently from an iOS Segue. These differences manifest not
only in the different programming languages, but in how each object interacts with the
underlying application framework.

Interfaces and Services
In Figures A and B, these are represented by red boxes. Several items are also
included here that are not shown, because they do not fit the description of an
interface or service in the iOS framework as they did in the Android framework. This is
because they are included in the CoreServices framework that governs all iOS
applications.

Apple Maps API

The MapKit framework provided by Apple is used to display the user location,
provided by Location Services. If there are any sightings associated with the
survey, they are marked on the map as annotations and include information
callouts that display choice information about that sighting when tapped. When
the user starts a survey, a breadcrumbing trail is drawn that shows their walking
path.

Camera
Apple provides a service that can call upon the camera to take a new picture or
select an existing one from the phone’s Photo application. In our application, a
sighting can include a photo and in some cases is necessary for validation when
submitted to a third party organization’s database.

dec1416.ece.iastate.edu | 11

UBR iOS Development - Senior Design Team Dec14-16

Local Export Structuring
A custom-written set of methods that structures the data housed in the dynamic
SQLite file into a set of comma separated value (CSV) files. The user is able to
specify which CSVs to create and then email the created files as attachments.

Location Services
The CoreLocation framework provided by Apple is the application’s way of
communicating with Apple’s Location Services. Based on the network
connection and device, the means of deriving a GPS gridpoint depend on the
included device hardware, data connection, and WiFi connection.

Open Weather API
An external framework that provides an interface to supply the application with
weather data for a given GPS gridpoint. The response is in the form of a JSON
message and parsed into fields used by the Sightings and Survey tables. The
data is requested and populated within the user interface automatically if
Location Services are available, and require no interaction by the user.

SQLite
A third party framework (included as a usable framework by Apple) for emulating
an SQL database within a special database file. The application uses this
framework to interface with the database and perform CRUD operations on
tables containing survey, sighting, breadcrumb, and miscellaneous information
recorded and modified during a survey.

Web Export Structuring
A custom-written set of methods that structure the data stored in the SQLite
database files as a JSON object that can be sent to and interpreted by our
intermediate server. It is important that after we export the data, we retain the
survey locally so that the user may edit the survey. If the survey is submitted
again, it modifies the server with the modified fields.

Storage
Phone Storage

The device’s internal storage is used to hold both photos taken for sightings and
the database files used by the SQLite framework. The application contains two
SQLite database files. The first contains all dynamically created information,
such as surveys and sightings. The second houses all of the static data
regarding possible butterflies to create a sighting for. The data in the second file

dec1416.ece.iastate.edu | 12

UBR iOS Development - Senior Design Team Dec14-16

is never modified by the application itself. This was a step made by the Android
team to ensure that this data could never be corrupted during an application
crash.

With iOS applications, each application contains a Documents folder, much like
a desktop file system for a user. Applications are unable to access any file not
contained in their own filesystem. This is contrary to Android devices, who have
a publically accessible file system. iOS devices have no public filesystem at all.
This constraint restricts certain functionalities available in the Android
application, such as the idea of a custom butterfly search list.

Server Storage
A server and database were provided by the university for use with this phase of
the project. This storage will act as an interface between the application and any
external organizations that would make use of the data. The server also happens
to host our team website. The database on the server has a similar schema to
that of the application database. The server, however, is able to take full
advantage of a MySQL database. More storage space on the server relative to
mobile devices also allows for greater scalability to increased demand from
external organizations.

Design Decisions
Location Services Support
The most important aspect of the Unified Butterfly Recorder applications is in how it
simplifies the survey process through automatic data collection. The bulk of this
automation relies on an accurate GPS gridpoint for the device’s current location. We
quickly discovered the major difference between Android and iOS support for user
location determinations: Android devices contain a chip which iOS devices lack. The
consequence of this difference is that an iOS WiFi device that is unable to connect to a
WiFi network can not make any determination as to it’s current position. An iOS cellular
device that cannot connect to a WiFi network or get a reliable signal from it’s cellular
provider will encounter the same problem.

As one might imagine, many butterfly surveys take place out of the realm of a WiFi
network, and possibly out of the realm of a cellular network. Many long conversations

dec1416.ece.iastate.edu | 13

UBR iOS Development - Senior Design Team Dec14-16

were conducted to address this problem. Several suggestions were considered,
including the use of third party devices that interface with the device to feed it GPS
data, as well as using the last known location in conjunction with the accelerometer
and gyroscope on the device to perform rough calculations by hand. All such
suggestions proved to be prohibitive. Third party devices rarely provide GPS to any
application but the application it was designed for. Also, using device processing
power to make on-the-fly GPS calculations would degrade application performance
during heavy use, such as breadcrumbing. Such calculations are also difficult to code
for background execution, i.e. when the app is not being displayed.

A breakthrough came when we collectively considered what type of person would be
using an iOS WiFi device to perform a survey. This type of person most likely has an
iOS cellular device as well that can create a WiFi hotspot. The user would then be able
to link their WiFi device to this hotspot and get available location updates. This type of
assumption makes the possibility of having no network access at all fairly low. This
requirement has been accepted by the client. The application was already required to
operate in the presence of no data connection, so we simply had to build standards of
operation when a location could not be determined. This amounted to setting the
location to null in data records and resting Location Services hardware after a period of
failed location queries.

Server Side Processing
At the semester mark we were faced with the task to expand the scope of the project.
Since we were aware that the previous design team had already made a proof of
concept export to the database, we decided to expand on that and take a step in
solving a larger problem. We wanted to solve the dilemma of how external
organizations were going to incorporate our data into their systems without manually
entering it into their systems and without any security vulnerabilities for their users.
What we decided to do is create a Python Flask app on the server that would handle
data coming in from both the Android and iOS apps. This data would then make the
data into objects and distribute it to the other organizations. This however did come
with more design choices, which compiled into more and more work.

Soon we began communicating with some external organizations who showed interest
in our system, such as Butterflies And Moths Of North America (BAMONA), eButterfly,
and others only to discover that the organizations did not have a means to take all of
the data the applications were collecting. In fact, they were only interested in the data
they would traditionally log, and would not associate any extra data with a particular
sighting once it was in their system. This meant that some of the data the user was

dec1416.ece.iastate.edu | 14

UBR iOS Development - Senior Design Team Dec14-16

collecting, manually or automatically, was not going to be used and would ultimately
be discarded. Our client had made it clear that they did not want to house any data or
administer a database for any application data, because they did not want to be seen
as a competing data collection organization. Doing so would discourage other
organizations’ surveyors from using the iOS and Android applications. From these
problems and constraints, we decided that until someone would be willing to take all
the data, we would store the information on an Iowa State server that would not be
made public and not used for academia. This would ensure that such information
would never be dissociated from any particular sighting, regardless of where it was
exported and the schema of the destination database.

Once the structure and logistics of the system were determined, we needed to define
how data would be submitted to the server and to a corresponding organization.
Certain organizations need authentication to submit data to their server, and this
provided yet another hurdle. At this point we could either take the username and
password as user input from the device and then send it to the the organization, but
decided that it would not be an acceptably secure method and requires too much
effort on the part of the user. Our next viable option is less secure, but allows for
export operations without requiring any device or personal identifier information from
the user. Our idea is that we would let the organizations set a key and send it out to
their user group. Upon submission of a survey, a user attempting to submit to a
particular organization would need that organization’s key. The server would then use
this identifier to export data to the correct organization.

Unfortunately, we have been unable to get a clear idea of the whether this solution is
acceptable. Although the data distribution to the organizations work is not complete,
we feel that our communications with these organizations have not only improved our
relation with them, but has made them more willing to work with us than ever before.

Detailed Design

Database (Schema)
Breadcrumb Table

● key - ID
● Columns

● Survey ID → Links back to Surveys table

dec1416.ece.iastate.edu | 15

UBR iOS Development - Senior Design Team Dec14-16

● Time - Time the breadcrumb was logged
● Latitude - GPS
● Longitude - GPS
● Accuracy - Accuracy of the location determination
● Speed - Speed at which the user was moving when the breadcrumb

was logged

Butterfly Table
● key - ID
● Columns

● Generic Name
● Scientific Name
● Common Family Name
● Scientific Family Name
● Common Subfamily Name
● Scientific Subfamily Name

Sightings Table

● key - ID
● Columns

● Survey ID → Links back to Surveys table
● Generic Name
● Scientific Name
● Common Family Name
● Scientific Family Name
● Common Subfamily Name
● Scientific Subfamily Name
● Location
● Number
● Temperature
● Wind Speed
● Wind Direction
● Cloud Cover
● Time
● Behavior
● Gender
● Condition
● Comment
● Wing Length
● Illuminance
● Relative Humidity
● Pressure

dec1416.ece.iastate.edu | 16

UBR iOS Development - Senior Design Team Dec14-16

● Transect
● Photo Name
● Ambient Temperature
● Mark Found
● Mark Added

Survey Table

● key - ID
● Columns

● Type
● Name
● Start Time
● End Time
● Number of surveyors
● Names of surveyors
● Location Name
● Comment
● Habitat Type
● Habitat Condition
● Wind Speed
● Cloud Cover
● Temperature
● Engagement
● Viewing Radius
● Uploaded
● Online Temperature
● Online Humidity
● Online Time
● Online Wind Speed
● Online Wind Direction
● Online Pressure
● Online Sunrise Time
● Online Sunset Time
● Online City
● Online Country
● Online Max. Temperature
● Online Min. Temperature
● Online Cloud Cover
● Online Rain
● Online Snow

Transect Table

dec1416.ece.iastate.edu | 17

UBR iOS Development - Senior Design Team Dec14-16

● key - ID
● Columns

● Name
● Description

dec1416.ece.iastate.edu | 18

UBR iOS Development - Senior Design Team Dec14-16

User Interface
Target Audience
The mobile application targets a particular community, but there are many kinds of
individuals that actually carry out a butterfly survey. These individuals can have widely
varying levels of expertise, in both butterfly surveys and mobile application use.
Following the Android application’s model, we have strived to make this application
easy to use and understand from its first use. This purpose has been further served by
adhering to the Apple Human Design standards, which all seasoned Apple users are
subconsciously aware of.

Screenflow Diagram

dec1416.ece.iastate.edu | 19

UBR iOS Development - Senior Design Team Dec14-16

Page Descriptions
Survey Selection
The landing page when UBR is launched.
From here, a user is able to select a survey or
perform per-survey operations such as
exporting and deleting. Users can also create
a new survey of a particular type. Each type
of survey has it’s own method of capturing
and using data.

 Surveying
Once a user selects a survey, they are in a
state known as “surveying.” During this time,
all operations, performed manually or
automatically, are done with respect to the
survey that was selected. Sightings and
Survey informations can be modified at any
time by navigating to their respective panels.

Survey
The survey page may be different depending
on which protocol is chosen. This tab allows
the user to input some information unique to
that particular survey. The same data will be
collected automatically for all surveys. For
data fields that are not present in a particular
survey protocol, the database will register null
values. When a user selects a survey, this
page is automatically shown for all protocols
except Incidental, as this information is
typically the first to be edited. Certain fields
can be set to auto-populate, such as surveyor
name and location name.

dec1416.ece.iastate.edu | 20

UBR iOS Development - Senior Design Team Dec14-16

Make Sightings
In this screen, the user is able to perform the
most basic survey operation - to log a sighting.
The list is impressive, but they can customize the
list be selecting a region and subregion in the
Settings page. They are also able to search by
species name and family name. If they log a
particular butterfly often, they can register that
butterfly as a favorite. Tapping a particular row
creates a sighting. They can tap anywhere in that
row to increment the counter.

Sightings
The sightings tab will show all of the sightings that a
user has made for a particular survey. Here they can
see a brief overview of the information for each
sighting, include it’s scientific name, generic name,
count, and the time at which the sighting was
logged. Long pressing a sighting will call up an alert
that allows the user to delete the sighting that was
pressed, incase a sighting was made mistakenly

dec1416.ece.iastate.edu | 21

UBR iOS Development - Senior Design Team Dec14-16

Edit Sighting
If a user taps a sighting in the Sightings tab, the
advanced details for that sighting is displayed.
These details include manually entered information
regarding the nature of the sighting, including
gender, behavior, and other physical properties of
the butterfly. Users can also take a picture and see
some of the automatically populated information
for the survey, if they choose. Changes can be
saved at anytime by tapping “Save Sighting” or the
back arrow to navigate back to the Sightings tab.

Map
The screen is a neat capability that is unique to a
Unified Butterfly Recorder survey - the ability to
plot the sightings made for the particular survey
via annotations and trace out the path that the
user walks via breadcrumbing. Each annotation
will also display basic information about which
sighting is being represented. The color is also
unique to each species/family combination.
Butterflies from the same family will have similar
colors, but all colors are distinct.

dec1416.ece.iastate.edu | 22

UBR iOS Development - Senior Design Team Dec14-16

Remote Export Support
Server Design
When we decided to create our server application we determined that it would be okay
to use languages and frameworks we were more comfortable with since it will be our
own project from scratch. Since, Eric Larssen had those most amount of experience in
the particular field, he chose to create a Flask Python application which is a very
lightweight and portable application. The application without data distribution is very
simple as it takes the survey information from the mobile applications in the JSON
format and enters the data into a SQLAlchemy model, which is an ORM for python.
Once it is in a model, it becomes trivial to add to the MySQL database. Once the server
handles distribution, it will have more functionality that will be able to be modified and
sent.

Testing
Developing a mobile app requires testing the application logic and event handling as
well as code integration with the user interface. App testing was performed in three
general categories: validation testing within Xcode, interface and integration testing on
developer devices, and field testing within the community. Automated testing was used
wherever possible, but requirements still changed frequently enough that our main
method of testing was scenario validation

Simulation and Logging
This phase of testing was focused on ensuring that code contained in each module
responsible for application decision making was sound. This included accessing the
onboard database, communicating with the various Apple frameworks to obtain and
apply user location data, and dynamically generating data for use in populating fields in
the user interface.

Testing utilized the use of the iOS simulator provided within the main Xcode bundle
and logging tools used to communicate the result of unit tests. The simulator can also
be used for basic user interface testing, but the simulator has some shortfalls that
necessitate another phase of testing.

dec1416.ece.iastate.edu | 23

UBR iOS Development - Senior Design Team Dec14-16

Developer Testing
During this phase, we as the developers would test the application on our personal
Apple devices. The device would be connected to the computer running the
application in Xcode, and we would be able to run use-case tests while monitoring the
logging output utilized in the first phase of testing. The focus in this phase is user
interface integration with the backend logic code.

Being able to test on an actual device provides several advantages over the provided
simulator. The simulator is less robust in user location determination and has no
support for certain features, like taking a new picture. Testing with a physical device
before releasing to the community allows us to ensure that a certain subset of features
is available for each new iteration.

Field Testing

Once the next iteration had been screened, we were ready to release it to the
community for field testing. Testers included members of our client group at Reiman
Gardens as well as several power users in different organizations. Implementing this
system raises awareness for the application and keeps our development efforts in
touch with the needs of the community as the app moves forward.

dec1416.ece.iastate.edu | 24

UBR iOS Development - Senior Design Team Dec14-16

iOS 8 included developer support for a system called TestFlight. TestFlight is
integrated within iTunes Connect, the Apple evaluation system used to eventually
release an app to the app store. After initial setup, each new iteration, or bundle, is
uploaded to iTunes Connect and immediately made available for download to
registered TestFlight testers via the free TestFlight app.

Testers are able to read release notes for each new bundle and provide feedback to
the developer email provided. New testers can be added at any time and invited to test
the application.

Project Management

Standards
As described earlier, there are several ways to conduct butterfly surveys that are accepted
by the industry. We have developer our app to support as many of these protocols as
possible, and tailoring the user experience and relevant data fields to match the protocol that
is being performed. Following these criteria ensure that we collect relevant data for each
protocol.

Schedule and Timeline
The first few months of the our project was spent learning ObjectiveC and learning the
Android version of the app to understand how it works. We also met with the client several
times to understand the importance of the app and get an idea of their vision for the whole
system. The database schema was implemented in the Spring, along with a few basic
functionalities.

Unfortunately we were set back from our initial timeline of having our minimal viable product
out during the summer. However, when we came back for the second semester we hit the
ground running and released our MVP to a select set of power users that were able to use
and test the functionality of the application. By the end of November we had 90% of the
functionality complete of that of Android application, along with a deployed application to the
server.

dec1416.ece.iastate.edu | 25

UBR iOS Development - Senior Design Team Dec14-16

Work Breakdown
Team Contribution
As a group we decided it was very important to keep everyone informed, even if one of
us had to miss a meeting, since our group consisted of only three members. This
proved extremely valuable throughout the semester as everyone seemed to be on the
same page. All group members were broadly informed about the development, but as
with software development teams in industry, we each had a facet of the development
that we were best at. CJ was in charge of device database interfacing, UI research,
and location services integration. Sean was in charge of implementing the mapping
and breadcrumbing services, while Eric focused mostly on the server application,
server database, and interfacing with external organizations.

Team Roles

Person Role

Eric Larssen Team Leader, Scrum Master

CJ Mankin Webmaster, Lead Developer

Sean Shickell Communications, Documentation

Risks
Loss of a Team Member
In the situation of a loss of a team member, we would without a doubt become strained
with the amount of work each remaining team member would take on. Since we have
strived to keep every team member informed and involved, and we have great
communication between members, we would not be forced to backtrack to understand
the departing team member’s work. Our progress would be significantly slowed,
however, as an application’s development is a heavy task for a group of two.

Lack of a Team Members Contributions
In all projects, in academia or the workplace, one group member performs some
majority of the work, whether it is by a large or small margin. This person can often feel
the weight of the team on their back. At the same time there can also be a person(s)
that does little or nothing throughout the project and let the team down. Originally, we
had not developed a plan of action for this scenario. Fortunately, our team dynamic

dec1416.ece.iastate.edu | 26

UBR iOS Development - Senior Design Team Dec14-16

changed from week to week to meet our changing requirements, so that certain
members were able to contribute more than others on certain weeks. These
contributors rotated often from week to week, so that no team members was doing the
most or least of the work in the group

Loss of a Third Party Service
By careful design by both the Android Team and our team, we were able to stay
loosely coupled from all third party libraries except of course the iOS platform and its
standard libraries that our application runs on. The only external service that could
possibly terminate support is the OpenWeather API, which serves as an automatic data
collection tool and is not required for functional operation.

Communication
Email
Whether communicating with our advisor or clients, we seemed to always fall back to
email. It may not get the credit it deserves in most projects, however it was used as our
primary form of communication. Trying to organize an event with 5 people would
otherwise seem impossible without the use of email.

Google Calendar
Although we did not use this to communicate through the traditional fashion, we
started off the second semester by filling out our schedules on a common calendar so
that when we needed to make a meeting, we could either have the person we wanted
to make a meeting with make an appointment, or we could easily see the time slots
available for the three of us to meet. This came in handy more than a couple of times.

Trello
Trello is a very open ended way of managing tasks across different subjects. In our
case we used Trello as a Kanban board, in our Agile development. We keep a backlog,
current iteration, open issues, and done board. Our backlog of issues are those that
have yet to be started. Typically issues listed at the top are the next to be implemented
in the next iteration. The current iteration issues are the those that are currently being
addressed. The open issues are issues that need to be addressed by someone other
than the person who initially was assigned to the ticket. Finally, the done column is
where the finished tickets go.

dec1416.ece.iastate.edu | 27

UBR iOS Development - Senior Design Team Dec14-16

We were able to use this board to communicate not only to our team but to our client
the progress of certain tickets and if we had any questions we would tag them on an
issue which sends them an email. We were not very traditional in the way our agile
process worked because we could not simply work on the project everyday let alone
meet everyday, so instead we met every week.

Summary

Acknowledgments
We would really like to thank everyone for their patience while working with us. There
are many groups that were not as fortunate to have a client, or an advisor, who are as
understanding as ours. Our team and project definitely had its rough patches, but we
got through them with their help.

We would specifically like to thank Dr. Diane Rover for spending the time she has over
the last year with us. Coming from a background of iOS development, she could
appreciate the challenge of creating an iOS application with three developers who had
little to no experience in mobile development. However, her honesty is what we are
thankful for the most. When it came to reviewing our poster, documents, and
presentations, her sometimes brutal honesty is what we needed to change the quality
of our project from good to great. Finally, the guidance she provided was invaluable
when it came to making the design decisions described previously.

Finally, we would like to give a special thanks to our clients, Nathan Brockman and
Anita Westphal, who took time out of their busy schedules to meet with us every week.
Their insight and forethought astounded us at times when we look back at some of the
suggestions they had made early on that helped us in the long run. Meeting us every
week meant that they got to see sometimes lots of progress made, and other times not
so much. They certainly understood that some features come faster than others and
were understanding when something was late. As experts in their field, we were
constantly energized by their enthusiasm and their dedication to this project and our
team, and it helped enforce the importance of this project.

Conclusion
From citizen scientists to experts in the butterfly field, we were tasked with creating an
iOS application that would benefit all surveyors in creating a survey with the most

dec1416.ece.iastate.edu | 28

UBR iOS Development - Senior Design Team Dec14-16

accurate information with as little input as possible. Although many of the difficult
design decisions we covered by our predecessor, we were faced with many decisions
ourselves. The port from an Android application to an iOS application is not as easy as
it may seem and although they may look visibly similar, it took much effort to make it
so. Although the iOS devices are more similar to each other, they lack the capability of
that of the Android and so compromises had to be made. These are but a couple
challenges we faced in our two semesters, and have discussed the others in the
document above.

After one semester of work, we decided to bite off more and try and solve a problem
where organizations that use the app have to manually convert the data to their
schema. In doing so, we have interacted with more than a few organizations who are
willing to put in the time and work with us to do so. Although it seems that the bite we
made was bigger than we had initially thought, we are excited to continue to work on it
after our work is done on the app.

In the upcoming weeks, when the client gives us the go ahead, we will publicly release
our application to the App Store with the full functionality of the Android version. Due
to the fact that our application is only available to a small set of users at this time, we
are unaware of how well liked the application will become in the community. Our client
plans on taking the application to conventions and show the world how easy and
powerful it is to use effectively.

Hopefully, adoption will become widespread enough to truly realize the idea of the
Unified Butterfly Recorder.

Future Forward
Resources and Contributions
We are encouraging our clients to create their own Apple ID and development profile
so that our team can continue to develop features that they requested. Because of the
time frame it takes to release a product to the Apple App Store, we plan on becoming
the maintainers of both the code repository and the applications. Any major features to
the iOS application will be ran through CJ for now or until someone else comes along.

Improvements

dec1416.ece.iastate.edu | 29

UBR iOS Development - Senior Design Team Dec14-16

As discussed in the document above, exporting to external databases is still a work in
progress and will need continuous communication with each organization. Eric will
continue his work on this following graduation in his free time.

Codebase and New Owners
All contributions to the UBR platform are under the Reiman Gardens Github
organization. Each repository in the organization works differently, while maintaining
excellent documentation. If another design team is chosen for the UBR platform or if
the client hires other developers, we will relinquish our roles upon request and do our
best to support their efforts.

dec1416.ece.iastate.edu | 30

UBR iOS Development - Senior Design Team Dec14-16

Appendix A: User Manual

Getting the App
The Unified Butterfly Recorder (iOS version) will be available on the App Store.

Basic Surveying

When UBR is first opened, it will begin on the Survey Selection page. If you have not
taken a survey yet, the list of surveys will be blank. Tap the “+” button at the top of the
screen and choose your survey type from menu that appears

Creating a New Survey

Incidental Protocol
If you selected Incidental as your protocol type, you will not be taken to the following
Survey page. Skip to the “Adding a Sighting” section

Other Protocols
For all other protocols, you will be taken to the
Survey page. Fill in as much information about the
survey as you’d like.

● Survey Name - what the survey will be saved
as (could be a name, a route on a location, etc.)

● Start/End Time - recorded automatically when
you start and stop a survey, based on system time.
These can be edited later if need be

● (Pollard protocol only) Transect Division
Format - how transects are distinguished. Is each
habitat a transect or is it determined by x meters.

● Viewing Radius (meters) - maximum distance
from a surveyor that an individual will be recorded.
This can be infinite if desired

● Location Name - name of the location being
surveyed

● Number of Surveyors - the number of people
participating in the survey

dec1416.ece.iastate.edu | 31

UBR iOS Development - Senior Design Team Dec14-16

● Names of Surveyors - name of each of the participants
● General Comments - any other information to be logged about the survey
● Habitat Type - description of the habitat being surveyed (i.e. forest, prairie, etc.
● Wind Speed - current wind speed

○ Calm: 0 mph (smoke rising vertically)
○ Relatively Still: 1-7 mph (wind felt on face)
○ Moderately Windy: 8-17 mph (leaves and small branches move)
○ Windy: 18+ mph (small trees or large branches sway)

● Cloud Cover - current sky conditions
○ Clear - no clouds
○ Mostly Clear - less than half cloud cover
○ Mostly Cloudy - more than half cloud cover
○ Cloudy - full cloud cover

● Temperature - current temperature. Default units (Fahrenheit or Celsius) can be
changed in settings

● Level of Engagement - amount of user attention given to the survey
○ 5: You are out just for the survey. No distractions
○ 4: Your main reason for being out is the survey, but there are some

distractions (i.e. conversations with other surveyors)
○ 3: You are performing the survey alongside another activity (i.e. walking a

dog)
○ 2: You are performing the survey as a secondary activity
○ 1: The survey was a last second decision that occurred upon seeing

some interesting butterflies while out

Adding Sightings

Incidental Protocol
Once you have selected the Incidental protocol, you will be brought to the Make
Sighting tab. Making a sighting is the same as described below except that once you
have selected a butterfly, you will be immediately taken to the Edit Sighting page,
described later.

Other Protocols
Once all survey information has been logged, tap the “Make Sighting” tab from the tab
bar located at the bottom of the screen. If you remember to log more survey
information later, you can return to the Survey tab by tapping it’s tab from the tab bar.

dec1416.ece.iastate.edu | 32

UBR iOS Development - Senior Design Team Dec14-16

On the Make Sighting tab, you can use the search bar at the top to search for a
particular species or look through the full list. Each table section, accompanied by it’s
own header, groups butterflies of a common family.
You can choose whether to list species by their
common name or scientific name in Settings

You can use table tabs to switch between viewing All
butterflies and Favorite butterflies. To add a favorite,
long press the table row for that butterfly in the All
section and select “Add to Favorites.” Favorites are
typically used for butterflies that are seen frequently.

Tap a species in the list to record a sighting.
Subsequent taps on the same species will record
additional sightings. When tapped, the table row will
expand to include a count stepper. Tap the “+” and “-”
buttons to increment or decrement the count for that
sighting. Incrementing can also be achieved by tapping
anywhere inside the row that is expanded. After a
period of inactivity, the row will shrink to it’s original
size. You do not have to wait for this to occur before
making another sighting; tapping another row will
automatically log the count for the previously made
sighting. Each sighting is automatically created with the
system time and GPS location, if available.

If a butterfly cannot be identified, there are Unknown butterfly species you can select
instead. There is a general Unknown, as well as an Unknown for each family if you are
able to narrow it down to a family.

(Pollard protocols only) The transect button at the top will let you determine which
section or habitat on your route the sightings were recorded in. Be sure to update the
selected transect when navigating between transects while surveying.

dec1416.ece.iastate.edu | 33

UBR iOS Development - Senior Design Team Dec14-16

Editing Sightings

Incidental Protocol
Because Incidental protocols are used to record one species of butterfly, you will
immediately be brought to this page once you have logged the sighting. You will not be
able to view the list of sightings because of the nature of this protocol. The Edit

Sighting page is the same as the other
protocols

Other Protocols
Tapping the “Sightings” tab from the tab
bar will bring you to the Sightings page,
which lists all the sightings associated with
your survey. Each table row briefly
summarizes the information contained.
Long pressing a row will allow you to
delete that sighting if it was made in error.

Tap on a sighting to view the Edit Sighting
page. Editing allows you to change the
species name, the number of individuals
seen, as well as adding extra information.
You can note interesting or unusual
behavior, butterfly gender, or it’s physical
condition.

Tap the “Take Photo” button to take a
picture of this sighting with your device’s
camera. This picture will be displayed next
to your sighting and on the sighting’s edit
page.

When you are finished editing details, tap

either the “Back” button or the “Save” button to save and write your changes.

dec1416.ece.iastate.edu | 34

UBR iOS Development - Senior Design Team Dec14-16

Mapping

The final tab to investigate is the Map tab, which
is available for all protocols except Incidental.
This displays a map of your current location
(marked as a blue dot) and uses the GPS
gridpoints of your sightings to plot their location.

The map view also uses your breadcrumb data to
plot the path you’ve walked during your survey.
This is done in real time as you view it or
whenever the view is loaded. Use traditional
pinch-to-zoom gestures to zoom in and out and
slide your finger across the view to change the
displayed region.

Ending a Survey

For all protocols except Incidental, survey’s must
be ended. When you have completed your route,
bring up the Survey tab and tap “End” at the top.
This will automatically log the end time and
discontinue breadcrumbing operations to
conserve battery life. All details are still able to be
edited. You can even add additional sightings if you wish.

dec1416.ece.iastate.edu | 35

